Zeros of linear combinations of Laguerre polynomials from different sequences

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zeros of linear combinations of Laguerre polynomials from different sequences

We study interlacing properties of the zeros of two types of linear combinations of Laguerre polynomials with different parameters, namely Rn = L α n + aL α n and Sn = L α n + bL α n−1. Proofs and numerical counterexamples are given in situations where the zeros of Rn, and Sn, respectively, interlace (or do not in general) with the zeros of L α k , L ′ k , k = n or n− 1. The results we prove ho...

متن کامل

Stieltjes interlacing of zeros of Laguerre polynomials from different sequences

Stieltjes’ Theorem (cf. [11]) proves that if {pn}n=0 is an orthogonal sequence, then between any two consecutive zeros of pk there is at least one zero of pn for all positive integers k, k < n; a property called Stieltjes interlacing. We prove that Stieltjes interlacing extends across different sequences of Laguerre polynomials Ln, α > −1. In particular, we show that Stieltjes interlacing holds...

متن کامل

On the interlacing of zeros of linear combinations of Jacobi polynomials from different sequences

We investigate the interlacing of the zeros of linear combinations pn+ aqm with the zeros of the components pn and qm, where {pn} ∞ n=0 and {qm} ∞ m=0 are different sequences of Jacobi polynomials. The results we prove hold when pn and qm are Jacobi polynomials P (α,β) n (x) and P (α,β) m (x) for certain values of α and β with m = n or m = n−1. Numerical counterexamples are given in situations ...

متن کامل

Stieltjes Interlacing of Zeros of Jacobi Polynomials from Different Sequences

A theorem of Stieltjes proves that, given any sequence {pn}n=0 of orthogonal polynomials, there is at least one zero of pn between any two consecutive zeros of pk if k < n, a property called Stieltjes interlacing. We show that Stieltjes interlacing extends, under certain conditions, to the zeros of Jacobi polynomials from different sequences. In particular, we prove that the zeros of P n+1 inte...

متن کامل

Monotonicity of zeros of Laguerre–Sobolev-type orthogonal polynomials

Article history: Received 15 December 2008 Available online 3 March 2010 Submitted by D. Waterman

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Computational and Applied Mathematics

سال: 2009

ISSN: 0377-0427

DOI: 10.1016/j.cam.2009.02.091